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Large scale models are useful for resource estimation.  Building large scale models is an important step in 
the scale consistent modelling approach.  Bayesian updating technique is recommended because of 
reliability and simplicity of integrating multiple types of data.  The theory of Bayesian updating technique 
is reviewed in this paper.  The CCG format of Bayesian updating is shown to be the same as other 
publications.  Simulation with Bayesian updating can be performed sequentially or using a P-field 
approach.  If the local uncertainties are already built in large scale modeling, the P-field simulation with 
Bayesian updating is recommended because of computational efficiency and the consistency between the 
local uncertainties and the simulation realizations.  

Introduction 

Large scale models are required for modeling large areas such as an entire lease or reservoir.  Building fine 
scale models for such large areas is neither practical nor necessary.  For example, 100 realizations of one 
variable for the Surmont lease at a scale of 20 m by 1 m by 1m would require over 1000 GB storage. This is 
a significant amount of storage and it takes time to process and understand the resulting models. A 2-D 
model for the Surmont lease at a scale of 100m by 100m only takes a few MB.  

Large scale models are useful for resource estimation at the early phases of field development. Resource 
estimation focuses on volume averages rather than detailed heterogeneity. Fine scale 3-D models of 
heterogeneity are useful for flow simulation but not necessary for resource estimation. Reliable large scale 
models are appropriate for resource estimation and selecting areas of interested. Fine scale 3-D models can 
be constructed in these areas when they are needed.  

The advantage of modeling at a large scale is that smaller scale data can be upscaled to the model scale so 
that the multiscale modeling is converted to single scale modeling. Gaussian-based techniques can be used 
without concern for non-linear averaging. Converting data to 2-D summaries further simplifies multiscale 
modeling. 2-D mapping is the most common approach to large scale modeling.  

For the scale consistent modeling (Ren et al., 2007), an important step is to construct a large scale model as 
accurate as possible by integrating all available data. There are several geostatistical techniques that can be 
used to integrate different data into a geological model including Gaussian-based Bayesian updating, 
indicator cokriging, and full cokriging. The Bayesian updating approach will be presented in detail due to 
its reliability and simplicity in data integration. The contribution of the primary and secondary information 
on the updated results can be easily understood. In the approach, well data including core and well log data 
are considered as primary data that we have the most confidence. The seismic data, geologic trends, 
structural information, geological interpretations and other indirectly measured data are used as secondary 
data that are normally extensively available.  

Bayesian updating technique was originally introduced by Doyen et al. (1996). The technique decomposes 
the collocated cokriging estimate into two models: prior and likelihood. The prior model is built from well 
data, and the likelihood model is built from secondary information (the definition could be reversed with a 
different interpretation). The prior model is then updated with the likelihood model to build the final 
posterior or updated model. Deutsch and Zanon (2004) applied the Bayesian updating technique to predict 
reservoir performance. They showed the approach in a new format that has the advantage of easy 
implementation in mapping multiple primary variables using multiple secondary variables. It has been 
successfully applied in the McMurray formation (Ren et al., 2006a and Ren et al., 2006c).  
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Bayesian updating uses all related information to generate local distributions of uncertainty. Under a 
multivariate Gaussian model, local uncertainty in the prior estimates is given by the kriging variance that 
accounts for the closeness and redundancy of the well data. Sparse well data lead to significant uncertainty 
in the interwell regions. Integrating secondary information such as seismic and geological data can reduce 
the uncertainty and improve the 2-D modeling. For large areas or areas have complex geology, the 
modeling could be improved by accounting for non-stationarity in correlations and data precision (Ren et 
al., 2006b).  

This paper focuses on the theory of Bayesian updating, presents some interesting aspects of the technique 
and the methodology of simulation with Bayesian updating.  

Theory of Bayesian Updating 

Consider a random function Y that is stationary over the area of interest, A.  It is the primary variable of 
interest. There are m random functions Xj, j = 1…m over the same model area. They are the secondary 
variables. Assume Y and Xj (j = 1…m) are jointly multi-Gaussian after univariate transformation. 

Suppose there are n data of the primary variable available in the area of interest: { }( ) , 1 . . .iy i n=u , where 
ui is the location vector in A. In the context of this thesis, the results of simple kriging using only the 
primary data are considered as a prior distribution of uncertainty parameterized by the kriging mean and 
variance. The kriging mean is calculated by: 
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where u is the location being estimated and the weights λi, (i =1…,n) are calculated from the well known 
normal equations: 
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where C(ui − uk) is the covariance between the two primary data y(ui) and y(uk), and C(u − uk) is the 
covariance between estimated location y(u) and primary data y(uk). The kriging variance is given by 
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The simple kriging leads to the parameters of a Gaussian conditional distribution conditioning to the 
primary data. A conditional distribution is predicted at each unsampled location. 

In general, secondary data are available at every location in the modelled area: 
{ }( ) , 1,. . . ,jx j m A= ∀ ∈u u . The results of prediction with all collocated secondary data provide 
another conditional distribution. This distribution is related to the likelihood distribution in a Bayesian 
context. It has been called the likelihood distribution; this thesis retains that name. The non-standard 
Gaussian likelihood distribution is fully defined by a mean and variance. 

The likelihood mean is calculated by: 
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Here, the weights λj (j=1, … n) are also given by the well-known normal equations: 
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where ρj,k is the correlation between different types of secondary data, and ρj,0 is the correlation between the 
secondary data and primary data. The likelihood variance is then given by: 
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The two conditional distributions (prior and likelihood) can be merged together to get the updated 
distribution. The mathematic combination is derived from the Bayesian statistical analysis of the posterior 
distribution. The posterior distribution of uncertainty at estimated location u is a conditional distribution 
conditioning to both primary and secondary data: 

 { }1( ) | ( ) , ( ) ,. . . ( )nP y X y yu u u u  (7) 

where ( )1 2( ) ( ) ( ) ( ) T
mX x x x=u u u u"  is a vector of the collocated secondary data. Under the 

assumption that collocated secondary data screen the influence of other secondary data that are further 
away (Journel, 1999), only collocated secondary data are considered. This distribution is equivalent to the 
results of collocated cokriging.  

In the context of Bayesian statistical analysis, the posterior distribution can be decomposed into a product 
of two distributions (Doyen et al., 1996; Besag, 1986): 
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where { }1( ) | ( ) ,. . . ( )nP y y yu u u  is the prior distribution only conditioning to primary data. As shown 

before, the prior distribution is a non-standard Gaussian distribution with simple kriging mean ( )Py u  and 

variance 2 ( )Pσ u . We have 
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The proportionality constants that are independent of y(u) are eliminated. 

The { }( ) | ( )f X yu u  in Equation (8) is the likelihood function that is simplified by only conditioning to 
the collocated primary data under the assumption of a Markov model that the collocated primary data 
screen the influence of other primary data that are further away (Journel, 1999). Under the assumption of a 
multivariate Gaussian model, it is the density function of a multivariate Gaussian distribution parameterized 
by the conditional mean vector { }( ) | ( ) ( )E X y y=u u ρ u  and m x m conditional covariance matrix Σ , 

where ( )1 0 2 0 0
T

nρ ρ ρ=ρ "  is the vector of correlation coefficients between the primary variable 
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and secondary data. The location u is dropped from the notation for simplicity. The covariance matrix can 
be converted to the matrix of correlation coefficients: 
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Since the secondary data are known, the likelihood function is actually a function of y(u). Eliminating the 
proportionality constants that are independent of y(u), we have: 
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Multiplying the Equations (9) and (10) gives the posterior distribution: 
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This equation is in the form of ( )2e x p A x B x− + , where the constants A and B define the mean and 

variance of a Gaussian kernel: 
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From Equation (5), the vector of weights can be expressed as: 1t
i j

−=λ ρ ρ . Thus, the likelihood mean and 

variance are: 1( ) ( )t
i jLy X−=u ρ ρ u  and 2 1( ) 1 t

L i jσ −= −u ρ ρ ρ . Then, the updated mean is 
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And the updated variance is: 
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These results give the parameters of a posterior non-standard Gaussian distribution called the updated 
distribution of uncertainty.  

A schematic illustration of the Bayesian updating technique is given in Figure 1.  

 
Figure 1: Schematic illustration of the Bayesian updating technique. The block dots are data, and the 
yellow square is a location being estimated. 

Some Interesting Aspects of Bayesian Updating 

The updated distribution obtained by merging the prior and likelihood distributions is non-convex 
because it does not always fall between the two distributions. Error! Reference source not found. shows 
the updated mean changes with increasing of prior means. The global distribution, a standard Gaussian 
distribution has an effect on whether the updated distribution falls between the two distributions. If the 
prior and likelihood distributions are on each side of the global distribution, the updated distribution will 
always fall in between. If the two distributions are both above the global distribution or both below the 
global distribution, the updated mean fall in between only when the means of the prior and likelihood 
distributions are far away enough (see cases 6 and 9 in Error! Reference source not found.). When the 
two distributions are very close, the updated mean will not fall in between (see cases 7 and 8 in Error! 
Reference source not found.). The updated distribution tends to be close to the distribution further away 
from the global mean ( 

Figure 2).  

Table 1: The Bayesian updating calculation showing the changes of updated mean (4th row) with 
increasing prior mean (second row). The variances of prior and likelihood are 0.4 for all cases. 
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Case 1 2 3 4 5 6 7 8 9 
Prior Mean Py  -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 

Likelihood Mean Ly  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Updated Mean Uy  -0.63 -0.31 0.00 0.31 0.63 0.94 1.25 1.56 1.88 
 

 
Figure 2: Schematic illustration of the location of updated distributions in Bayesian updating technique.  

The updated variance is only affected by the prior and likelihood variances. It has the characteristic 
Gaussian property of homoscedasticity. Error! Reference source not found. shows the updated variance 
increases with increasing of prior variances. The updated variance is always the smallest variance among 
the three distributions. As shown in  

Figure 2: Schematic illustration of the location of updated distributions in Bayesian 
updating technique., the width of the updated distribution is always the narrowest, which indicates the 
uncertainty is reduced after Bayesian updating.   

Table 2: The Bayesian updating calculation showing the increasing of updated variance (last row) with 
increasing of prior variance (second row). 

Case 1 2 3 4 5 6 7 
Prior Variance 2

Pσ  0.10 0.30 0.40 0.50 0.60 0.70 0.90 

Likelihood Variance 2
Lσ  0.40 0.40 0.40 0.40 0.40 0.40 0.40 

Updated Variance 2
Uσ  0.09 0.21 0.25 0.29 0.32 0.34 0.38 

 
The Bayesian updating technique relies on the multivariate Gaussian assumption. Under this assumption, 
all marginal and conditional distributions are Gaussian, and can be fully defined by an appropriate mean 
and variance. Therefore, the updated mean and variance provide a non-standard Gaussian distribution of 
uncertainty at the estimated location. Natural data may not follow Gaussian distribution. Normal score 
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transformation is required to transform all the variables into normal scores at the beginning. After Bayesian 
updating, the local conditional distribution of uncertainty must be back transformed to original units.  

The multivariate Gaussian assumption also provides that all multivariate relationships are linear and can be 
characterized by correlation coefficients. The correlation coefficients obtained from the wells are 
considered to measure the true relationship of each pair of variables over the model area and applicable to 
the interwell regions under the assumption of stationary. However, in practice, the multivariate 
relationships may not be linear or stationary over a large area. Local correlation coefficient may be more 
representative of the true relationship. The reliability of secondary data should also be considered in the 
correlation with the primary data. Modifications were introduced to account for possible non-stationarity, 
complex multivariate relationships and quality of the secondary data in local uncertainty assessment (Ren et 
al., 2006). 

Secondary information, locally varying correlation and quality are used in Bayesian updating to improve 
the local estimation. However, regardless of how fine-tuned the estimates are, there are errors and 
uncertainties. Bayesian updating technique provides uncertainty distributions at all of locations. The mean 
values of updated distributions cannot be used as a realization because of smoothness. Simulated 
realizations are required for constructing fine scale models in the scale consistent modeling approach.  

Simulation with Bayesian Updating 

Under the multivariate Gaussian model, Bayesian updating can be performed within sequential Gaussian 
simulation (SGS). The basic procedure is to perform simple kriging sequentially using input data and 
previously simulated values to build local prior distributions (Equations 1 to 3), and establish the updated 
distribution using the prior distribution and the likelihood distribution (Equations 4 to 6) from collocated 
secondary data. Then, draw randomly from the updated distribution (Equations 12 and 13) to get the 
simulated value:  

 ( ) ( ) ( ) ( )s u uy w yσ= +u u u u  (14) 

where w(u) is a random number drawn from a standard normal distribution, ( )uσ u  and ( )uy u  are the 
Bayesian updated standard deviation and mean, respectively. 

For computing efficiency, rather than performing Bayesian updating sequentially, we can perform Bayesian 
updating to build local uncertainty distributions and use a simplified simulation approach, P-field 
simulation (Srivastava, 1992), to generate simulated realizations. P-field simulation starts with a probability 
field, that is, a set of spatially correlated probability values uniformly distributed between 0 and 1. Then, 
simulated values are drawn by sampling the local conditional distributions using the corresponding 
probability values. 

The implementation of P-field simulation with Bayesian updating is to draw a set of standard normal 
deviates that are spatially correlated within the field A, and then condition these standard normal values 
with the Bayesian updated mean and standard deviation to get simulated values as shown in Equation 14. 
The only difference is that the w(u) is the spatially correlated value from standard normal distribution. 

An example of simulation with Bayesian updating is presented. A reference image of primary variable is 
given in the top left of Figure 3 for comparing purpose. The values in the black circles are used as primary 
data. A secondary variable (top right in Figure 3) is also provided for simulation. Both SGS with Bayesian 
updating and P-field simulation with Bayesian updating are performed using the primary and secondary 
data. Multiple realizations are generated. The P-field simulation realizations #1, #5 and #10 are shown 
together with the reference image, secondary data, and updated estimates in Figure 3. The SGS with 
Bayesian updating simulation realizations are shown in Figure 5. Figure 4 and Figure 6 shows the cross 
plots of reference versus the simulation realizations #1, #5 and #10. The collocated co-simulation (CC-
SGS) is also performed to compare the two Bayesian updating simulation realizations. The collocated co-
simulation is performed using the SGSim program from GSLIB (Deutsch and Journel, 1998). A variance 
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reduction factor of 0.6 is used to correct the variance inflation. The reference and the collocated co-
simulation realizations #1, #5 and #10 are shown in Figure 7. The cross plots of the reference versus CC-
SGS realizations #1, #5 and #10 are shown in Figure 8.  

By visually comparing different simulation realizations with the reference image, the P-field simulation 
realizations are best in matching the overall trend of the reference. The correlations between the reference 
and P-field simulation realizations are the highest among the three simulation methods, and the points are 
closer to the 45o line in the cross plots. The main reason for that is the updated results capture the trend of 
the reference very well (Figure 3). The variances of all simulation realizations are close to the variance of 
reference data. P-field simulation shows no variance inflation. SGS with Bayesian updating shows slightly 
higher variances. CC-SGS realizations would show much higher variances if no variance correction 
applied. The other two simulation methods show similar correlations between reference and simulation 
realizations. Overall, the P-field simulation approach has the best performance.  

Conclusions 

Bayesian updating technique is recommended for large scale modeling.  The CCG format of Bayesian 
updating is same as the original format of Bayesian updating approach proposed by Doyen et al., 1996. The 
advantage of the CCG format is the easier implementation of integrating multiple secondary variables. 
Many sources of data can be used as secondary data. Secondary variables that contain trend or non-linear 
geological features can bring those features into Bayesian updating results. A large scale model can be very 
reliable after integrating different sources of data.  

If the local uncertainties are already built in large scale modeling, the P-field simulation with Bayesian 
updating is recommended because of computational efficiency and the consistency between the local 
uncertainties and the simulation realizations. The comparison with collocated cosimulation, sequential 
Gaussian simulation with Bayesian updating indicates P-field simulation performs better in term of 
correlation between simulation realization and a reference image.  P-field simulation may cause a slight 
error around wells. But they are considered negligible if the primary variable is quite spatially continuous. 
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Figure 3: The primary variable (reference) and secondary variable used for Bayesian updating are in the 
top row. The Bayesian updated estimates and P-field simulation realizations are shown in the middle and 
bottom rows. 
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Figure 4: The cross plots of the reference versus the P-field simulation realizations #1, #5 and #10. 

 

 

Figure 5: The primary variable (reference, up-left) and the SGS with Bayesian updating simulation 
realizations. 
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Figure 6: The cross plots of the reference versus the SGS with Bayesian updating simulation realizations 
#1, #5 and #10. 

 

 

Figure 7: The primary variable (reference, up-left) and the collocated co-simulation realizations.  
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Figure 8: The cross plots of the reference versus the collocated co-simulation realizations #1, #5 and #10. 


